SUMMARY

Pseudo-Smarandache Functions of First and Second kind*

A. S. Muktibodh [†] Mohota Science College, Umred Rd. Nagpur, India.

S.T. Rathod [‡] Mohota Science College, Umred Rd. Nagpur,India.

In this paper we define two kinds of Pseudo-Smarandache functions. We have investigated more than fifty terms of each pseudo-Smarandache function. We have proved some interesting results and properties of these functions. The Pseudo-Smarandache function Z(n) was introduced by Kashihara [4] as follows

1 Some definitions

Definition 1.1. For any integer $n \ge 1, Z(n)$ is the smallest positive integer m such that 1 + 2 + 3 + ... m is divisible by n.

The main results and properties of Pseudo-Smarandache functions are available in [3] [4],[5]. In the following we define Pseudo-Smarandache functions of first kind and second kind.

^{*}This work is supported by UGC under the project No. 47-993/09 (WRO)

[†]E-mail: amukti2000@yahoo.com

[‡]Email: satish.rathod12@yahoo.com

Definition 1.2. For any integer $n \ge 1$, the Pseudo-Smarandache function of first kind, $Z_1(n)$ is the smallest positive integer m such that $1^2+2^2+3^2...+m^2$ is divisible by n.

Definition 1.3. For any integer $n \ge 1$, the Pseudo-Smarandache function of second kind, $Z_2(n)$ is the smallest positive integer m such that $1^3 + 2^3 + 3^3 \dots + m^3$ is divisible by n.

2 Some Results for Pseudo-Smarandache functions of first kind.

Following results can be directly verified from the table given above.

1.
$$Z_1(n) = 1$$
 only if $n = 1$.

- 2. $Z_1(n) \ge 1$ for all $n \in N$.
- 3. $Z_1(p) \leq p$, where p is a prime.
- 4. If $Z_1(p) = n, p \neq 3$, then p > n.

Lemma 2.1. If *p* is a prime then $Z_1(p) = p + 1$, for p = 2 or 3. Also, $Z_1(p) = \frac{p-1}{2}$ for $p \ge 5$.

Lemma 2.2. For p = 2, $Z_1(p^k) = p^{k+1} - 1$.

Lemma 2.3. $Z_1(n) \ge max\{Z_1(N) : N \mid n\}.$

Lemma 2.4. Let $n = \frac{k(k+1)(2k+1)}{6}$ for some $k \in N$, then $Z_1(n) = k$.

Lemma 2.5. It is not possible that $Z_1(m) = m$ for any $m \in N$.

Lemma 2.6. S(m) = k then $S(m) = Z_1(2k+1)$.

3 Some Results on Pseudo-Smarandache function of second kind

Following properties are result of direct verification.

- 1. $Z_2(n) = n$ only for n = 1.
- 2. $Z_2(p) = p 1, p \neq 2$. $Z_2(p) = p + 1$ for p = 2.
- 3. $Z_2(n) \ge max\{Z_2(N) : N \mid n\}.$

Following are some of the important results.

Lemma 3.1. If S(n) = k then $Z_2(k) = n$.

Open Problem: What is the relation between $Z_1(n)$ and $Z_2(n)$?

References

- Aschbacher Charles, On Numbers that are Pseudo Smarandache and Smarandache Perfect, Smarandache Notions Journal , 14(2004), p.p. 40-41.
- [2] Gioia, Anthony A. The Theory of Numbers- An Introduction, NY, U.S.A. Dover Publications Inc., 2001.
- [3] Ibstedt, Henry, Surfing on the Ocean of Numbers- A Few Smarandache Notions and Similar Topics, U.S.A. Erhus University Press, 1997.
- [4] Kashihara, Kenichiro, Comments and topics on Smarandache Notions and problems, U.S.A. Erhus University Press, 1996.
- [5] A.A.K.Majumdar, A note on Pseudo Smarandache Function, Scientia Magna, Vol. 2, (2006), No. 3, 1-25.